fc2ブログ
受験数学かずスクール
京大理学部で数学をやったわんこらが中学生や高校生、受験生に数学の公式や問題を解説します。

極限の定義、ε-δ論法は否定を考えてみるとわかりやすい
今回は極限の定義で大学の専門書とかで使われるε-δ論法について説明したいと思います。

それは高校1年生からのある一通のメールから始まった
「教科書で限りなく近づくが曖昧です。
ε-δ論法がありました。
よろしくお願いします。」

大学生でもε-δ論法わかりにくい言う人多いしな。


簡単にするためまずは数列の極限で説明したいと思います。

lim(n→∞)a_n=α

これが大学の専門書における厳密な定義では

(∀ε>0)(∃n_0∈N)(∀n∈N)(n≧n_0⇒|a_n-α|<ε)

となります。

言葉で言うと

任意の正の数εに対して、ある自然数n_0が存在し、n≧n_0となる全ての自然数nに対して
|a_n-α|<ε
となる時、数列{a_n}はαに収束するって言う意味です。


何がわからないかと言うと、何故こんな定義をしてるのかがわからないのだと思います。

まず任意の正の数εと言うところは、任意と言ってもどこまでも小さく出来るって言うところに意味があります。

どこまでもεを小さくしても、n_0を多くしてnの範囲をn_0≦nと言うように大きい所に絞れば
|a_n-α|<ε
と出来る。

これが{a_n}がαに収束するって言うことです。

例えばa_n=1/nが0に収束すると言うことは
任意のε>0に対してn_0=[1/ε]+1とすれば([1/ε]は1/εを越えない最大の整数)
n_0>1/εになってるわけですが
n≧n_0の時
|1/n-0|=1/n≦1/n_0<ε
でこれで{a_n}は0に収束すると言えるわけです。


この説明がわからんねん言うとんねん!

100216m1.jpg

ぶほー!!

まあまあ痛いな。



そこで反対のことを考えてみて欲しいねん。

否定をとって収束しない場合を考えるねん。


(∀ε>0)(∃n_0∈N)(∀n∈N)(n≧n_0⇒|a_n-α|<ε)

の否定をとれば

(∃ε>0)(∀n_0∈N)(∃n∈N)(n≧n_0かつ|a_n-α|≧ε)

この否定の意味は

n_0を大きくして、どのようにn≧n_0と言うように大きいところにnの範囲を絞っても
|a_n-α|≧ε
となるnが存在してしまうような、ある正の数εが存在する

ってことです。


確かにいくらnを大きい範囲に絞っても、a_nとαの差がある値より小さくならないものがずっと出てくるならa_nがαに収束するとは言えません。

そうでない場合は収束するって言うとわかりやすいと思います。

たぶんな。


こうやって否定を考えてみると、わかりやすいねん。

たぶんな。

収束しない場合を考えて、そうでないときが収束する場合になると考えるとわかりやすいねん。

たぶんな。


ε-δ論法に戻ると

関数f(x)に対してlim(x→a)f(x)=bをε-δ論法で書けば

(∀ε>0)(∃δ>0)(∀x∈R)(|x-a|<δ⇒|f(x)-b|<ε)

意味は

任意の正の数εに対して、ある正の数εの存在して
|x-a|<δとなるすべてのxに対して|f(x)-b|<ε

です。

これも正の数εをどれだけ小さくしても、δを小さくして|x-a|<δとxの範囲をaの近く絞れば
|f(x)-b|<ε
とすることできるって言う解釈で、これをx→aでf(x)はbに収束すると言えるねん。


これがわかりにくいと今度は反対つまり否定を考えてみて、

正の数δを小さくして、どんなに|x-a|<δと言うようにxの範囲をaの近くに絞っても
|f(x)-b|≧ε
となるxが存在してまうような正の数εが存在してしまうなら収束しない。

この反対であれば収束すると言うとわかりやすいって話やな。

数理物理

関連記事



テーマ:算数・数学の学習 - ジャンル:学校・教育

▲ページトップへ
この記事に対するトラックバック
トラックバックURL
→https://kazuschool.blog.fc2.com/tb.php/414-75ee56ee
この記事にトラックバックする(FC2ブログユーザー)
▲ページトップへ
プロフィール

わんこら

Author:わんこら
京都大学理学部で数学と物理を勉強し、数学を専攻しました。
東京で数学と物理の講師やってます

わんこら日記で日記とか勉強の仕方とか書いています

わんこらチャンネル
チャンネル登録お願いします


わんこら式数学の勉強法

メール
迷惑メールにされる危険性があるので出来るだけ
kazuyuki_ht○guitar.ocn.ne.jp
(○を@にしてください)に送ってください
勉強とかでどんな悩み持ってるかなど色々と教えてくれると嬉しいです。
わんこら式のやり方についてのメールはわんこら式診断プログラムを参考にしてください

詳しいプロフィール

人気blogランキングへ



にほんブログ村 受験ブログへ



学生広場

相互リンクも募集してます。

何かあれば
kazuschool_ht★yahoo.co.jp
かメールフォームからメールください。
(★を@にしてください)

カテゴリー

メール

FC2カウンター

リンク

このブログをリンクに追加する

お勧めの参考書、ノート

数学でお勧めのノートは
KOKUYOの無地
理由




センター試験は過去問が大切


チャートが終わったらお勧め
大学への数学1対1シリーズ
数学1


数学A


数学2


数学B


数学3


数学C

月別アーカイブ

ブログ内検索

RSSフィード

最近のトラックバック

ブロとも申請フォーム

この人とブロともになる

  1. 無料アクセス解析